Hermanos!!! Ante la muy delicada situación actual de esta planta nuclear, considero que nuestro mejor aporte sería la utilización de nuestra energía síquica y conciencial colectiva mediante la visualización para neutralizar los efectos negativos de estos reactores de la central de Fukushima... Si lo deseas, te invito a que visualicemos estos reactores fríos, libres de daños, escapes y en perfecto estado operacional.
Un Fuerte Abrazo a Todos y que la Luz Divina nos cobije incesantemente con sus Rayos Puros y Cristalinos...
Gloria H.
http://armonicosdeconciencia.blogspot.com
---
jueves 17 de marzo de 2011
Fukushima está en alerta nuclear.
En tres de sus seis reactores se teme que el núcleo con el combustible se esté fundiendo y se piensa que la vasija de contención de dos de ellos está dañada. Además, el combustible gastado que estaba en las piscinas del almacenaje está fuera de control o desaparecido. Damos algunas claves para entender cómo se ha llegado a esta situación y lo que puede suponer que continúe.
¿Qué tipo de combustible se usa?
De los seis reactores, cinco utilizan óxido de uranio. El reactor número 3, sin embargo, emplea una mezcla de uranio y plutonio conocida como MOX. Este reactor preocupa a los técnicos porque es un material más letal y que se funde más fácilmente.
¿Cómo funciona la planta?
La central usa una tecnología llamada reactor de agua en ebullición o BWR (Boiling Water Reactor), que es la misma de las centrales españolas de Garoña y Cofrentes. Garoña es un modelo idéntico al reactor 1 de Fukushima. Los construyó General Electric y abrieron en 1971. El combustible o núcleo del reactor se calienta dentro de una vasija llena de agua y protegida por una estructura llamada de contención. El combustible alcanza hasta 2.000 grados y hace hervir el agua. El vapor es conducido por tuberías hasta una turbina que genera electricidad.
¿Cómo se mantiene el sistema?
El mecanismo es como una olla. Para que el proceso sea estable hay que controlar la presión, el vapor y la temperatura. El combustible debe estar tapado por agua para que no se sobrecaliente.
¿Cómo empezó todo?
Los edificios resistieron al seísmo y al tsunami, pero se dañó el abastecimiento eléctrico del exterior. La central activó entonces el sistema de emergencia autónomo, pero la inundación lo estropeó. Sin electricidad, fallaron los sistemas de refrigeración y los núcleos empezaron a sobrecalentarse. Se recurrió a agua del mar para evitarlo, pero no bastó.
¿Qué ocurre cuando el núcleo empieza a calentarse?
El sistema se desestabiliza. En el núcleo hay muchos materiales. Está el combustible de uranio o plutonio y las vainas de metal de circonio que lo protegen. También están las barras de control, hechas de yoduro de boro, un material que frena las reacciones atómicas. Además, hay acero y cemento. Cuando sube la temperatura, todos esos materiales reaccionan sin control. A altas temperaturas el vapor oxida los metales con rapidez. Las vainas se deterioran y el combustible libera partículas radiactivas volátiles. Además, el proceso de oxidación libera hidrógeno, que es explosivo.
¿Qué ha pasado en los núcleos?
En los reactores 1, 2 y 3 ha habido explosiones de hidrógeno y escapes de vapor con esas partículas volátiles. También se han hecho liberaciones controladas de gases para disminuir la presión.
¿Cuál es el parte de daños?
En las vasijas 1, 2 y 3 el combustible está expuesto al aire y el agua sólo cubre hasta la mitad. Esto hace que el proceso de calentamiento del combustible avance. Puede llegar a alcanzar 3.000 grados. El núcleo se convierte en una amalgama de materiales. El uranio o el plutonio, a miles de grados, quedan revestidos de acero y cemento. Como una brasa atómica, es muy difícil enfriarlo. Además, aumenta el riesgo de que la estructura de contención, que es la barrera clave de protección, no aguante y se abra liberando el contenido. De hecho, en los reactores 1 y 2 se cree que esa estructura de contención ha sido dañada y puede tener fugas. Por encima de la estructura de contención está el edificio en sí de la central. Están muy dañados los del 1,3 y 4 y bastante tocado el del 2.
¿Puede haber un Chernobil?
Al parecer no. La diferencia con Chernobil es que aquel reactor no tenía estructura de contención. Cuando el núcleo se descontroló saltó por los aires y destrozó el edificio exterior liberando casi todo el contenido. Esto incluía materiales volátiles y las partículas pesadas del combustible. La nube alcanzó miles de metros lo que ayudó a su dispersión a larga distancia. En Fukushima, la presencia de estructuras de contención es clave. Si resisten, se evitará el mal mayor al estilo Chernobil. Sin embargo, los técnicos creen que quedan todavía muchos días de lucha para evitar la fusión completa del material radiactivo. Y que seguirá habiendo fugas.
¿Qué pasa con las piscinas?
Es un gran problema extra. El combustible gastado durante años se guardaba en la central de Fukushima en piscinas situadas en la parte alta del edificio del reactor. El combustible gastado mantiene un calor residual de cientos de grados y debe estar tapado con agua para enfriarlo. Tiene una altísima radiactividad. En el reactor 4 la piscina está sin agua y el combustible ha empezado a calentarse. Lo mismo ocurre en la piscina 3. Y se ignora el estado de las piscinas del reactor 1 del 2.
¿Qué sustancias se han emitido?
Han salido las partículas más ligeras. Gases nobles como el kriptón y el radón y elementos como el yodo, el cesio, el estroncio, el rutenio y el tritio. La radiación ha alcanzado en algunos instantes 400 milisieverts / hora, 400 veces más de la dosis anual recomendada.
Fuente: ElMundo
Reactor nuclear: Instalación en la que puede iniciarse, mantenerse y controlarse una reacción nuclear en cadena. El reactor (nuclear) de agua a presión es un reactor refrigerado con agua natural a una presión superior a la de saturación, a fin de impedir su ebullición. El reactor de agua en ebullición (como los de la central de Fukushima) es un reactor refrigerado con agua natural, la cual se deja que hierva en el núcleo en una cantidad considerable.
BWR o Reactor de agua en ebullición: El calor generado por las reacciones en cadena se usa para hervir el agua. De este tipo son los reactores de la planta japonesa de Fukushima o los de Garoña, en Burgos. Ambas plantas usan el mismo reactore de tecnología BWR (Boiling Water Reactor) fabricado por General Electric. La compañía americana les vendió el mismo modelo a japoneses y españoles a comienzos de los 70. El reactor 1 de Fukushima y el único que hay en Garoña son idénticos y se inauguraron en 1971.
Barra de combustible: Combustible nuclear dispuesto en forma de barra formado por pastillas contenidas en una vaina tubular metálica. En las centrales nucleares puede usarse Uranio y Plutonio, pero este segundo también es utilizado en la fabricación de armas nucleares. En Fukushima hay cinco reactores que funcionan con uranio y uno de ellos -el reactor tres- que contiene una mezcla llamada MOX que contiene plutonio y uranio.
Vasija: Recipiente en el que se encuentra el núcleo de un reactor nuclear. En él están las vainas de combustible (cubierta metálica que contiene herméticamente el combustible), el reflector (material situado alrededor del núcleo que es el encargdo de devolver los neutrones que de otro modo escaparían), el refrigerante (agua radiactiva) y otros componentes.
Contención: Estructura utilizada para albergar en su interior instalaciones nucleares o radiactivas para disminuir la posibilidad de contaminación del medio ambiente. En centrales nucleares, la contención está formada por una chapa de acero de revestimento y un recubrimiento de hormigón de 90 centímetros de espesor y contiene en su interior el reactor y el circuito primario.
Sievert (Sv): Unidad de la dosis equivalente y de la dosis efectiva en el Sistema Internacional de Unidades. Es decir, mide la dosis de radiación absorbida por la materia viva. Un Sv equivale a un julio de energía por cada kilogramo de peso. La unidad antigua es el REM, usada, por ejemplo, en la antigua Unión Soviética. Fue la unidad de referencia durante el accidente de Chernóbil. 1Sv equivale a 100 REM. Hay ocasiones en las que se hace referencia a bequerelios, pero las unidades no son comparables porque el bequerelio es una unidad de radiactividad, no de dosis equivalente.
Radiactividad: Propiedad de algunos elementos químicos de emitir partículas u ondas electromagnéticas. Esta propiedad se debe a la existencia de una descompensación entre el número de neutrones y de protones del núcleo del átomo, que provoca una inestabilidad y una liberación de la energía acumulada en forma de partículas u ondas. La radiactividad natural se debe a elementos que emiten radiaciones espontáneamente, como es el caso del uranio, el torio o el radón, por ejemplo.
Núcleo del reactor: Región de un reactor nuclear en la que se encuentra el combustible y donde se produce la reacción nuclear de fisión y la liberación de calor.
Fusión nuclear: Reacción entre núcleos de átomos ligeros que conduce a la formación de un núcleo más pesado que los iniciales, acompañada de la emisión de partículas elementales y de energía.
Fisión nuclear: Reacción nuclear en la que tiene lugar la ruptura de un núcleo pesado, generalmente en dos fragmentos cuyo tamaño son del mismo orden de magnitud, y en la cual se emiten neutrones y se libera gran cantidad de energía.
Fusión del núcleo: Es un daño grave del núcleo del reactor debido a un sobrecalentamiento. Se produce cuando un fallo grave del sistema de la central impide la adecuada refrigeración del núcleo del reactor. Cuando eso sucede, las vainas de combustible se calientan hasta llegar a derretirse. Supone un gran peligro debido a que existe el riesgo de que el material radiactivo (el combustible nuclear) sea emitido a la atmósfera. No se debe confundir con fusión nuclear (ver más arriba).
Isótopo: Cada una de las distintas formas de los átomos de un elemento químico. Todos los isótopos de un elemento tienen el mismo número atómico (número de protones) y, por tanto, pertenecen al mismo elemento químico, pero difieren entre sí en el número de neutrones.
Partículas alfa: Son emitidas por los radionucleidos naturales no son capaces de atravesar una hoja de papel o la piel humana y se frenan en unos pocos centímetros de aire. Sin embargo, si un emisor alfa es inhalado, ingerido o entra en el organismo a través de una herida puede ser muy nocivo.
Partículas beta: Son electrones que salen despedidos en los procesos radiactivos. Los de energías más bajas son detenidos por la piel, pero la mayoría de los presentes en la radiación natural pueden atravesarla. Al igual que los emisores alfa, si un emisor beta entra en el organismo puede producir graves daños.
Rayos gamma: Radiación electromagnética producida en el fenómeno de desintegración radiactiva. Su longitud de onda es menor que la de los rayos X, por lo que es una radiación extraordinariamente penetrante. La radiación gamma suele acompañar a la beta y a veces a la alfa. Los rayos gamma atraviesan fácilmente la piel y otras sustancias orgánicas, por lo que puede causar graves daños en órganos internos.
Fuente: ElMundo
------
No hay comentarios:
Publicar un comentario